Стиль жизни

Чем опасно ядерное оружие. Ядерное оружие. Средство для самоуничтожения

Чем опасно ядерное оружие. Ядерное оружие. Средство для самоуничтожения

Взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление — синтез — деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного босирипаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза — от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей применения ядерного оружия ядерные взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Поражающие факторы ядерного взрыва

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) — область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй — за 4 с; пятый — за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см 2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи — в 2-3 раза; убежища — в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник — светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс — количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Ослабление светового излучения возможно вследствие экранирования его атмосферной облачностью, неровностями местности, растительностью и местными предметами, снегопадом или дымом. Так, густой лее ослабляет световой импульс в А-9 раз, редкий — в 2-4 раза, а дымовые (аэрозольные) завесы — в 10 раз.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Проникающая радиация

Проникающая радиация — ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность — 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов — 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений — доза и мощность дозы излучения, а для нейтронов — поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная — в течение 4 суток 50 Р; многократная — в течение 10-30 суток 100 Р; в течение квартала — 200 Р; в течение года — 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон — 10 см, грунт — 14 см, дерево — 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения , которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Источниками РВ в облаке являются продукты деления ядерного горючего (урана, плутония), непрореагировавшая часть ядерного горючего и радиоактивные изотопы, образующиеся в результате действия нейтронов на грунт (наведенная активность). Эти РВ, находясь на загрязненных объектах, распадаются, испуская ионизирующие излучения, которые фактически и являются поражающим фактором.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения — уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 1):

Зона А — зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней — 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б — зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б — примерно 10 % площади радиоактивною следа.

Зона В — зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г — зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Рис. 1. Схема радиоактивного загрязнения местности в районе ядерного взрыва и по следу движения облака

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляет соответственно 8, 80, 240, 800 рад/ч.

Большая часть радиоактивных осадков, вызывающая радиоактивное заражение местности, выпадает из облака за 10-20 ч после ядерного взрыва.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) — это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения — это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Очаг поражения но количеству погибших и пораженных может быть соизмерим или превосходить очаг поражения при землетрясении. Так, при бомбежке (мощность бомбы до 20 кт) города Хиросима 6 августа 1945 г. его большая часть (60 %) была разрушена, а число погибших составило до 140 000 чел.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 2.

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

В условиях военных действий с применением ядерного оружия в зонах радиоактивного заражения могут оказаться обширные территории, а облучение людей — принять массовый характер. Для исключения переоблучения персонала объектов и населения в таких условиях и для повышения устойчивости функционирования объектов народного хозяйства в условиях радиоактивного заражения па военное время устанавливают допустимые дозы облучения. Они составляют:

  • при однократном облучении (до 4 суток) — 50 рад;
  • многократном облучении: а) до 30 суток — 100 рад; б) 90 суток — 200 рад;
  • систематическом облучении (в течение года) 300 рад.

Вызванные применением ядерного оружия, наиболее сложные. Для их ликвидации необходимы несоизмеримо большие силы и средства, чем при ликвидации ЧС мирного времени.

В 1945 г. была создана атомная бомба, свидетельствуя о новых невиданных возможностях человека. В 1954 г. была построена первая в мире атомная электростанция в Обнинске, и на "мирный атом" возлагалось много надежд. А в 1986 г. произошла самая крупная в истории Земли техногенная катастрофа на Чернобыльской АЭС как следствие попытки "приручить" атом и заставить его работать на себя. В результате этой аварии выделилось больше радиоактивных материалов, чем при бомбардировке Хиросимы и Нагасаки. "Мирный атом" оказался более страшным, чем военный.

О принципиальной возможности создания оружия, использующего энергию ядерного взрыва, физики говорили еще перед началом второй мировой войны. Многие характеристики такого взрыва к тому времени уже были вычислены. После бомбардировки японских городов Хиросимы и Нагасаки ядерная война стала страшной реальностью. Общественное сознание больше всего поразило даже не количество жертв, исчисляемое сотнями тысяч, и полное разрушение за несколько мгновений двух больших городов, а те последствия, которые несла проникающая радиация. Ни один человек, перенесший ядерную бомбардировку, не мог быть уверенным в своем будущем: даже через много лет на нем или его потомках могли сказаться последствия облучения.

В конце 1989 года в СССР было опубликовано сообщение комиссии, которая занималась "очевидными сегодня" последствиями проводившихся в свое время испытаний атомной бомбы на Чукотке (50-е - 60-е годы). Поскольку чукчи живут за счет оленей, которые питаются лишайниками, кумулирующими радиоактивность, плохое состояние их здоровья объясняют тогдашним радиоактивным загрязнением: почти 100% больны туберкулезом, 90% хроническими легочными заболеваниями, значительно повышена заболеваемость раком (например, смертность от рака пищевода самая высокая в мире, частота рака печени в 10 раз выше, чем в среднем по стране). Средняя продолжительность жизни составляет всего лишь 45 лет (так как смертность среди новорожденных составляет 7-10%).

Именно в радиации, в различных проявлениях лучевой болезни ученые и общественность увидели главную опасность нового оружия, но оценить ее по-настоящему человечество смогло значительно позже. Многие годы в атомной бомбе люди видели, хотя и очень опасное, но всего лишь оружие, способное обеспечить победу в войне. Поэтому ведущие государства, интенсивно совершенствуя ядерное оружие, готовились и к его использованию, и к защите от него. Только в последние десятилетия мировое сообщество начало осознавать, что ядерная война станет самоубийством всего человечества.

Радиация не единственное и, может быть, не главное из последствий крупномасштабной ядерной войны. Пожарами в случае ядерной войны будет охвачено все способное гореть. Подсчитано, что средний заряд бомбы мощностью в 1 Мт ТНТ выжигает 250 км2 леса. Значит, для того чтобы сжечь 1 млн. км2 леса, потребуется лишь около 13 % общего ядерного потенциала планеты, существовавшего к тому времени (1970г.). При этом в атмосферу будет выброшено в виде сажи более сотни миллионов тонн биомассы (и атомарного углерода). Однако наибольшее количество сажи будет выброшено в атмосферу при пожарах в городах. Впервые такие расчеты были проведены английскими биохимиками еще в 60-е гг. Они рассчитали, что при достаточно высоком тепловом импульсе (более 20 кал/см2), возгорание всего, что может гореть, будет происходить в любых зданиях. Они доказали, в частности, что средний заряд мощностью 0,5 Мт ТНТ может полностью выжечь более 200 км2 (что в 100-200 раз больше площади, непосредственно покрываемой шаром ядерного взрыва).

В начале 80-х гг. анализом различных сценариев возможной ядерной войны начали заниматься американские ученые. В базовом сценарии, взятом за основу группой ученых во главе с К. Саганом, предполагалось, что в ядерной войне произойдет обмен ядерными ударами мощностью зарядов около 5000 Мт ТНТ, т. е. менее 30 % совокупного ядерного потенциала СССР и США, что в сотни тысяч раз больше мощности взрывного устройства, использованного при бомбардировке Хиросимы. Кроме разрушения около 1000 крупнейших городов северного полушария от возникшего огромного пожара в атмосферу поднимется такое количество сажи, что атмосфера не пропустит свет и тепло. Наряду с горением леса большой объем оптически активных аэрозолей, способных предельно поглощать солнечный свет, выделяется при пожаре городов (когда горят заводы, наполненные пластическими материалами, запасами топлива и т.д.). В этом случае возникает также эффект крупномасштабной тяги, т.е. в городах полностью выгорает практически все, что может гореть, а продукты горения выбрасываются в верхнюю часть атмосферы и нижнюю часть стратосферы. Если крупные частицы под действием силы тяжести довольно быстро оседают, то вымывание мелких частиц аэрозоля (в т. ч. сажы) из атмосферы представляет сложный и малоизученный процесс. Мелкие частицы (особенно атомарного углерода), оказавшиеся в стратосфере, могут оставаться там достаточно долго. Они то и экранируют солнечный свет. Эффективность поступления солнечного света к земной поверхности зависит не только от количества аэрозолей в стратосфере, но и от времени их вымывания. Если процесс вымывания происходит в течение нескольких месяцев, то в течение месяца земная поверхность будет получать менее 3% обычного количества солнечного излучения, в результате на Земле установится "ядерная ночь" и, как следствие, "ядерная зима". Однако целостная картина всего процесса могла быть получена только на основе анализа крупномасштабной математической модели совместной динамики атмосферы и Мирового океана. Первые модели были построены в ВЦ АН СССР еще в 70 гг., а расчеты с их использованием для основных сценариев ядерной войны проведены в июне 1983 г. под руководством академика Н. Н. Моисеева В. В. Александровым и Г. Л. Стенчиковым и др. Позднее аналогичные результаты получены в национальном центре климатических исследований США. Подобные расчеты многократно проводились в последующие годы научными учреждениями других стран. Величина падения температур не слишком зависит от мощности используемого ядерного оружия, но эта мощность очень сильно влияет на длительность "ядерной ночи". Результаты, полученные учеными разных стран, отличались в деталях, но качественный эффект "ядерной ночи" и "ядерной зимы" очень четко обозначился во всех расчетах. Таким образом, можно считать установленным следующее:

1. В результате крупномасштабной ядерной войны над всей планетой установится "ядерная ночь", и количество солнечного тепла, поступающего на земную поверхность, сократится в несколько десятков раз. В результате наступит "ядерная зима", т. е. произойдет общее понижение температуры, особенно сильное - над континентами.

2. Процесс очищения атмосферы будет идти многие месяцы и даже годы. Но атмосфера не вернется в первоначальное состояние - ее термогидродинамические характеристики станут совершенно иными.

Понижение температуры поверхности Земли спустя месяц после образования сажевых облаков в среднем будет значительным: 15-200С, а в удаленных от океанов точках - до 350С. Такая температура продержится несколько месяцев, за которые земная поверхность промерзнет на несколько метров, лишив всех пресной воды, тем более что прекратятся дожди. В Южном полушарии тоже наступит "ядерная зима", так как сажевые облака окутают всю планету, изменятся все циклы циркуляции в атмосфере, хотя в Австралии и Южной Америке похолодание будет менее значительно (на 10-120С).

Океан остынет на 1,5-20С, что вызовет огромную разницу температур вблизи побережья и постоянные сильнейшие штормы. Атмосфера начнет нагреваться не снизу, как сейчас, а сверху. Циркуляция прекратится, поскольку вверху окажутся более легкие и теплые слои, исчезнет источник конвекционной неустойчивости атмосферы, и выпадение сажи на поверхность будет происходить много медленнее, чем по сценарию Сагана, который не учитывал движение атмосферы, связи атмосферы и океана, выпадение осадков, изменение температуры в разных частях Земли.

До начала 1970-х гг. проблема экологических последствий подземных ядерных взрывов сводилась лишь к защитным мерам против их сейсмического и радиационного воздействия в момент проведения (т.е. обеспечивалась безопасность взрывных работ). Детально изучение динамики процессов, протекающих в зоне взрывов, велось исключительно с точки зрения технических аспектов. Малые размеры ядерных зарядов (по сравнению с химическими) и легко достижимая большая мощность ядерных взрывов привлекали военных и гражданских специалистов. Возникло ложное представление о высокой экономической эффективности подземных ядерных взрывов (понятие, подменившее менее узкое - технологической эффективности взрывов как действительно мощного способа разрушения массивов горных пород). И только в 1970-е гг. стало выясняться, что отрицательное экологическое воздействие подземных ядерных взрывов на окружающую среду и здоровье людей сводит на нет получаемую от них экономическую выгоду. В 1972 г. в США была прекращена программа использования подземных взрывов в мирных целях "Плаушер", принятая в 1963 г. В СССР с 1974 г. отказались от проведения подземных ядерных взрывов наружного действия. Подземные ядерные взрывы в мирных целях в Астраханской и Пермской областях и в Якутии.

Из них четыре взрыва на территории Якутии проведено с целью глубинного сейсмического зондирования земной коры, шесть взрывов осуществлено с целью интенсификации добычи нефти и притока газа, один - для создания подземной емкости - хранилища нефти.

Взрыв "Кратон-3" (24 августа 1978г.) сопровождался аварийным радиоактивным выбросом. В результате анализа, проведенного Радиевым институтом им. В.Г.Хлопина (Санкт-Петербург), выявлено большое количество плутония-239 и плутония-240 в почве. Аварийный выброс радионуклидов на поверхность составил около 2% суммы продуктов деления при мощности взрыва около 20 кт ТНТ. Непосредственно над эпицентром зафиксирована мощность экспозиционной дозы 80 мкР/ч. Концентрация цезия-137 в 10 раз превысила уровень естественного радиоактивного фона.

Особенности комбинированного воздействия ядерно-взрывных технологий проявились в аварийных ситуациях, происшедших на Астраханском газоконденсатном, а также Осинском и Гежском нефтяных месторождениях.

На некоторых объектах, где проводились подземные ядерные взрывы, радиоактивное загрязнение зафиксировано на значительном расстоянии от эпицентров как в недрах, так и на поверхности. В окрестностях начинаются опасные геологические явления - подвижки массивов горных пород в ближней зоне, а также значительные изменения режима подземных вод и газов и появление наведенной (спровоцированной взрывами) сейсмичности в отдельных районах. Эксплуатируемые полости взрывов оказываются весьма ненадежными элементами технологических схем производственных процессов. Это нарушает надежность роботы промышленных комплексов стратегического значения, сокращает ресурсный потенциал недр и других природных комплексов. Длительное пребывание в зонах взрывов вызывает поражение иммунной и кроветворной системы человека.

Для приповерхностных подземных ядерных взрывов с выбросом грунта радиационная опасность сохраняется по сей день. На севере Пермской области (в связи с намечавшейся в 1970-е гг. реализацией проекта по переброске стока северных рек на юг) на водоразделе рек Печоры и Камы предполагалось создать участок канала с помощью 250 таких взрывов. Первый (тройной) взрыв "Тайга" был проведен 23 марта 1971 г. Заряды были заложены в рыхлых обводненных грунтах на глубине 127,2, 127,3 и 127, 6 м на расстоянии 163-167 м друг от друга. Во время взрыва возникло газопылевое облако высотой 1800 м, диаметром 1700 м. После того как оно опустилось, в рельефе местности обнажилась траншейная выемка длиной 700 м, шириной 340 м и глубиной около 15 м. Вокруг выемки образовался вал грунта высотой около 6 м и шириной около 50 м с зоной рассеянных глыб шириной до 170 м. Постепенно эта выемка заполнилась грунтовыми водами и превратилась в озеро. На протяжении многих лет радиоактивность в районе объекта "Тайга" достигла 1100 мкР/ч (более чем в 100 раз превышая уровень естественного радиоактивного фона).

Главной экологической проблемой России от Мурманска до Владивостока является массовое радиационное загрязнение и загрязнение питьевой воды.

Существует предложение использовать термоядерные взрывы "максимально малой мощности... в большой подземной камере" для наработки плутония, который затем сжигался бы в ядерных реакторах.

Последующее развитие мирных применений ядерных зарядов (так называемых "чистых" зарядов) создало условия для использования по более экологичной и экономичной схеме производства энергии, заключающейся в следующем. Энергозаряд, состоящий из малого количества делящегося материала (ДМ) - плутония-239 или урана-233, - который служит запалом, и дейтерия, который дает основную долю энергии, взрывается в прочной полости, называемый котлом взрывного сгорания (КВС). В момент взрыва корпус котла защищается толстым слоем жидкого натрия (защитной стенкой) от высокой температуры, импульсного давления и проникающей радиации. Натрий одновременно служит теплоносителем. Полученная тепловая энергия далее передается паровым турбинам для выработки электроэнергии по обычной схеме. При взрыве происходит выделенеие 43,2 МэВ энергии на 6 атомов дейтерия с образованием двух нейтронов. Эти нейтроны используются для получения плутония-239 или урана-233 (из урана-238 или тория-232) в количествах, превышающих расход ДМ при работе запала энергозаряда. Наработанный делящийся материал используется для запалов следующих энергозарядов и как топливо для реакторов вторичной ядерной энергетики. Разработчики надеются, что взрывная дейтериевая энергетика сможет давать дешевую электроэнергию и тепло, а также позволит ликвидировать топливный тупик традиционных АЭС.

Ядерное оружие - оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза изотопов водорода (дейтерия и трития) в более тяжелые, например ядра изогона гелия. При термоядерных реакциях выделяется энергии в 5 раз больше, чем при реакциях деления (при одной и той же массе ядер).

Ядерное оружие включает различные ядерные боеприпасы, средства доставки их к цели (носители) и средства управления.

В зависимости от способа получения ядерной энергии боеприпасы подразделяют на ядерные (на реакциях деления), термоядерные (на реакциях синтеза), комбинированные (в которых энергия получается по схеме «деление - синтез - деление»). Мощность ядерных боеприпасов измеряется тротиловым эквивалентом, т. с. массой взрывчатого вещества тротила, при взрыве которою выделяется такое количество энергии, как при взрыве данного ядерного босирипаса. Тротиловый эквивалент измеряется в тоннах, килотоннах (кт), мегатоннах (Мт).

На реакциях деления конструируются боеприпасы мощностью до 100 кт, на реакциях синтеза - от 100 до 1000 кт (1 Мт). Комбинированные боеприпасы могут быть мощностью более 1 Мт. По мощности ядерные боеприпасы делят на сверхмалые (до 1 кг), малые (1 -10 кт), средние (10-100 кт) и сверхкрупные (более 1 Мт).

В зависимости от целей применения ядерного оружия ядерные взрывы могут быть высотными (выше 10 км), воздушными (не выше 10 км), наземными (надводными), подземными (подводными).

Поражающие факторы ядерного взрыва

Основными поражающими факторами ядерного взрыва являются: ударная волна, световое излучение ядерного взрыва, проникающая радиация, радиоактивное заражение местности и электромагнитный импульс.

Ударная волна

Ударная волна (УВ) - область резко сжатого воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давлений и плотности и нагревают до высокой температуры (несколько десятков тысяч градусов). Этот слой сжатого воздуха представляет ударную волну. Передняя граница сжатого слоя воздуха называется фронтом ударной волны. За фронтом УВ следует область разряжения, где давление ниже атмосферного. Вблизи центра взрыва скорость распространения УВ в несколько раз превышает скорость звука. С увеличением расстояния от места взрыва скорость распространения волны быстро падает. На больших расстояниях ее скорость приближается к скорости распространения звука в воздухе.

Ударная волна боеприпаса средней мощности проходит: первый километр за 1,4 с; второй - за 4 с; пятый - за 12 с.

Поражающее воздействие УВ на людей, технику, здания и сооружения характеризуется: скоростным напором; избыточным давлением во фронте движения УВ и временем ее воздействия на объект (фаза сжатия).

Воздействие УВ на людей может быть непосредственным и косвенным. При непосредственном воздействии причиной травм является мгновенное повышение давления воздуха, что воспринимается как резкий удар, ведущий к переломам, повреждению внутренних органов, разрыву кровеносных сосудов. При косвенном воздействии люди поражаются летящими обломками зданий и сооружений, камнями, деревьями, битым стеклом и другими предметами. Косвенное воздействие достигает 80 % от всех поражений.

При избыточном давлении 20-40 кПа (0,2-0,4 кгс/см2) незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие УВ с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, поражения внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на местности.

Для защиты от воздействия УВ следует использовать: траншеи, щели и окопы, снижающие се действие в 1,5-2 раза; блиндажи - в 2-3 раза; убежища - в 3-5 раз; подвалы домов (зданий); рельеф местности (лес, овраги, лощины и т. д.).

Световое излучение

Световое излучение - это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи.

Его источник - светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов. В момент образования светящейся области температура на ее поверхности достигает десятков тысяч градусов. Основным поражающим фактором светового излучения является световой импульс.

Световой импульс - количество энергии в калориях, падающей на единицу площади поверхности, перпендикулярной направлению излучения, за все время свечения.

Ослабление светового излучения возможно вследствие экранирования его атмосферной облачностью, неровностями местности, растительностью и местными предметами, снегопадом или дымом. Так, густой лее ослабляет световой импульс в А-9 раз, редкий - в 2-4 раза, а дымовые (аэрозольные) завесы - в 10 раз.

Для защиты населения от световою излучения необходимо использовать защитные сооружения, подвалы домов и зданий, защитные свойства местности. Любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Проникающая радиация

Проникающая радиация - ноток гамма-лучей и нейтронов, излучаемых из зоны ядерного взрыва. Время ее действия составляет 10-15 с, дальность - 2-3 км от центра взрыва.

При обычных ядерных взрывах нейтроны составляют примерно 30 %, при взрыве нейтронных боеприпасов - 70-80 % от у-излучения.

Поражающее действие проникающей радиации основано на ионизации клеток (молекул) живого организма, приводящей к гибели. Нейтроны, кроме того, взаимодействуют с ядрами атомов некоторых материалов и могут вызвать в металлах и технике наведенную активность.

Основным параметром, характеризующим проникающую радиацию, является: для у-излучений - доза и мощность дозы излучения, а для нейтронов - поток и плотность потока.

Допустимые дозы облучения населения в военное время: однократная - в течение 4 суток 50 Р; многократная - в течение 10-30 суток 100 Р; в течение квартала - 200 Р; в течение года - 300 Р.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. с. такой толщиной материала, проходя через которую радиация уменьшается в 2 раза. Например, в 2 раза ослабляют интенсивность у-лучей: сталь толщиной 2,8 см, бетон - 10 см, грунт - 14 см, дерево - 30 см.

В качестве защиты от проникающей радиации используются защитные сооружения ГО, которые ослабляют ее воздействие от 200 до 5000 раз. Слой фунта в 1,5 м защищает от проникающей радиации практически полностью.

Радиоактивное загрязнение (заражение)

Радиоактивное загрязнение воздуха, местности, акватории и расположенных на них объектов происходит в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.

При температуре примерно 1700 °С свечение светящейся области ядерного взрыва прекращается и она превращается в темное облако, к которому поднимается пылевой столб (поэтому облако имеет грибовидную форму). Это облако движется по направлению ветра, и из него выпадают РВ.

Источниками РВ в облаке являются продукты деления ядерного горючего (урана, плутония), непрореагировавшая часть ядерного горючего и радиоактивные изотопы, образующиеся в результате действия нейтронов на грунт (наведенная активность). Эти РВ, находясь на загрязненных объектах, распадаются, испуская ионизирующие излучения, которые фактически и являются поражающим фактором.

Параметрами радиоактивного загрязнения являются доза облучения (по воздействию на людей) и мощность дозы излучения - уровень радиации (по степени загрязнения местности и различных объектов). Эти параметры являются количественной характеристикой поражающих факторов: радиоактивного загрязнения при аварии с выбросом РВ, а также радиоактивною загрязнения и проникающей радиации при ядерном взрыве.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны (рис. 1):

Зона А - зона умеренного заражения. Характеризуется дозой излучения до полного распада радиоактивных веществ на внешней границе зоны 40 рад и на внутренней - 400 рад. Площадь зоны А составляет 70-80 % площади всего следа.

Зона Б - зона сильного заражения. Дозы излучения на границах равны соответственно 400 рад и 1200 рад. Площадь зоны Б - примерно 10 % площади радиоактивною следа.

Зона В - зона опасного заражения. Характеризуется дозами излучения на границах 1200 рад и 4000 рад.

Зона Г - зона чрезвычайно опасного заражения. Дозы на границах 4000 рад и 7000 рад.

Рис. 1. Схема радиоактивного загрязнения местности в районе ядерного взрыва и по следу движения облака

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляет соответственно 8, 80, 240, 800 рад/ч.

Большая часть радиоактивных осадков, вызывающая радиоактивное заражение местности, выпадает из облака за 10-20 ч после ядерного взрыва.

Электромагнитный импульс

Электромагнитный импульс (ЭМИ) - это совокупность электрических и магнитных полей, возникающих в результате ионизации атомов среды под воздействием гамма-излучения. Продолжительность его действия составляет несколько миллисекунд.

Основными параметрами ЭМИ являются наводимые в проводах и кабельных линиях токи и напряжения, которые могут приводить к повреждению и выводу из строя радиоэлектронной аппаратуры, а иногда и к повреждению работающих с аппаратурой людей.

При наземном и воздушном взрывах поражающее действие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра ядерного взрыва.

Наиболее эффективной защитой от электромагнитного импульса является экранирование линий энергоснабжения и управления, а также радио- и электроаппаратуры.

Обстановка, складывающаяся при применении ядерного оружия в очагах поражения.

Очаг ядерного поражения - это территория, в пределах которой в результате применения ядерного оружия произошли массовые поражения и гибель людей, сельскохозяйственных животных и растений, разрушения и повреждения зданий и сооружений, коммунально-энергетических и технологических сетей и линий, транспортных коммуникаций и других объектов.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений имеет па границе избыточное давление на фронте ударной волны 50 кПа и характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, разрушениями и повреждениями коммунально-энергетических и технологических сетей и линий, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений с избыточным давлением на фронте ударной волны от 30 до 50 кПа характеризуется: массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными и сильными разрушениями зданий и сооружений, повреждением коммунально- энергетических и технологических сетей и линий, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений с избыточным давлением от 20 до 30 кПа характеризуется безвозвратными потерями среди населения (до 20 %), средними и сильными разрушениями зданий и сооружений, образованием местных и очаговых завалов, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений с избыточным давлением от 10 до 20 кПа характеризуется слабыми и средними разрушениями зданий и сооружений.

Очаг поражения но количеству погибших и пораженных может быть соизмерим или превосходить очаг поражения при землетрясении. Так, при бомбежке (мощность бомбы до 20 кт) города Хиросима 6 августа 1945 г. его большая часть (60 %) была разрушена, а число погибших составило до 140 000 чел.

Персонал объектов экономики и население, попадающие в зоны радиоактивного заражения, подвергаются воздействию ионизирующих излучений, что вызывает лучевую болезнь. Тяжесть болезни зависит от полученной дозы излучения (облучения). Зависимость степени лучевой болезни от величины дозы излучения приведена в табл. 2.

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

В условиях военных действий с применением ядерного оружия в зонах радиоактивного заражения могут оказаться обширные территории, а облучение людей - принять массовый характер. Для исключения переоблучения персонала объектов и населения в таких условиях и для повышения устойчивости функционирования объектов народного хозяйства в условиях радиоактивного заражения па военное время устанавливают допустимые дозы облучения. Они составляют:

при однократном облучении (до 4 суток) - 50 рад;

многократном облучении: а) до 30 суток - 100 рад; б) 90 суток - 200 рад;

систематическом облучении (в течение года) 300 рад.

Чрезвычайные ситуации, вызванные применением ядерного оружия, наиболее сложные. Для их ликвидации необходимы несоизмеримо большие силы и средства, чем при ликвидации ЧС мирного времени.

В современном мире заголовки многих новостных изданий пестрят словами "Ядерная угроза". Многих это пугает, а еще большее количество людей не представляет, что делать в том случае, если это станет реальностью. Со всем этим мы и разберемся далее.

Из истории изучения атомной энергии

Изучение атомов и выделяемой ими энергии началось в конце XIX века. Огромный вклад в это сделали европейские ученые и его жена Мария Склодовская-Кюри, Резерфорд, Нильс Бор, Альберт Эйнштейн. Все они в разной степени открыли и доказали, что атом состоит из более мелких частиц, которые обладают определенной энергией.

В 1937 году Ирэн Кюри со своим учеником открыли и описали процесс деления атома урана. А уже в начале 1940 годов в Соединенных Штатах Америки группа ученых разработала принципы ядерного взрыва. Полигон Аламогордо впервые ощутил на себе всю мощь их разработки. Случилось это 16 июня 1945 года.

А через 2 месяца первые атомные бомбы мощностью около 20 килотонн были сброшены на японские города Хиросима и Нагасаки. Жители этих населенных пунктов даже не представляли об угрозе ядерного взрыва. В результате жертвы составили примерно 140 и 75 тыс. человек соответственно.

Стоит отметить, что военной необходимости в таких действиях со стороны США не было. Правительство страны таким образом просто решило продемонстрировать свою мощь всему миру. К счастью, на данный момент это единственный случай использования столь мощного оружия массового поражения.

До 1947 года эта страна была единственной, кто обладал знаниями и технологиями по производству атомных бомб. Но в 1947 году СССР догнал их, благодаря успешным разработкам группы ученых под руководством академика Курчатова. После этого и началась гонка вооружения. США спешили как можно быстрее создать термоядерные бомбы, первая из которых имела мощность 3 мегатонны и была взорвана на испытательном полигоне в ноябре 1952 года. СССР догнал их и тут, спустя чуть более полугода, испытав подобное оружие.

Сегодня угроза глобальной ядерной войны постоянно витает в воздухе. И хотя были приняты десятки мировых соглашений о неиспользовании такого оружия и уничтожении уже имеющихся бомб, есть ряд стран, которые отказываются принимать описанные в них условия и продолжают разработки и испытания все новых боеголовок. К сожалению, они не совсем понимают, что массовое применение такого оружия может уничтожить всю жизнь на планете.

Что же такое ядерный взрыв?

Северная Корея

Острее всего угроза ядерной войны в современном мире стоит в связи с испытаниями, которые проводятся в КНДР. Ее лидер заявляет, что ученым уже удалось создать боеголовки, способные поместится на межконтинентальных ракетах, которые легко достигнут территории США. Правда это или нет, сказать сложно, поскольку страна находится в политической и экономической изоляции.

От Северной Кореи требуют свернуть все разработки и испытания нового оружия. Также просят допустить комиссию МАГАТЭ для изучения ситуации с использованием радиоактивных веществ. Чтобы стимулировать КНДР к действиям, вводятся санкции. И Пхеньян и правда на них реагирует: проводит все новые испытания, которые неоднократно засекались с орбитальных спутников. Уже не раз в новостях проскакивала мысль о том, что в определенный момент Корея может начать войну, но путем соглашений ее удавалось сдерживать.

Чем закончится это противостояние, сказать трудно, особенно после того, как пост президента США занял Дональд Трамп. Что американский, что корейский лидер отличаются непредсказуемостью. Поэтому любое, кажущееся угрожающим стране действие может привести к тому, что начнется третья (и на этот раз последняя) мировая война.

Мирный атом?

Но ведь не только в военной мощи государств выражается современная ядерная угроза. Атомную энергию используют и на электростанциях. И как ни печально это звучит, на них тоже случаются аварии. Самая известная - это Чернобыльская катастрофа, которая случилась 26 апреля 1986 года. Количество радиации, которое во время ее было выброшено в воздух можно сравнить с 300 бомбами в Хиросиме только по количеству цезия-137. Радиоактивное облако накрыло значительную часть планеты, а вокруг самой ЧАЭС до сих пор настолько загрязненные территории, что могут наградить серьезной лучевой болезнью пребывающего на них человека за пару минут.

Причиной аварии стали испытания, которые закончились плачевно: работники не успели вовремя охладить реактор, и крыша в нем оплавилась, вызвав пожар на станции. В открытое небо ударил луч ионизирующего излучения, а содержимое реактора превратилось в пыль, которая и стала тем радиоактивным облаком.

Вторая по известности - это авария на японской станции "Фукусима-1". Ее вызвало сильное землетрясение и цунами 11 марта 2011 года. В результате их вышли из строя системы внешнего и аварийного электроснабжения, что не дало возможности вовремя охладить реакторы. Из-за этого они и оплавились. Но спасатели были готовы к подобному развитию событий и максимально оперативно приняли все меры, чтобы предотвратить катастрофу.

Тогда серьезных последствий удалось избежать только благодаря слаженной работе ликвидаторов. Но вот незначительных аварий в мире было несколько десятков. Все они несли в себе угрозу радиоактивного загрязнения и лучевой болезни.

Поэтому можно сказать, что человеку пока еще полностью не удалось укротить энергию атома. И даже если уничтожить все радиоактивные боеголовки, проблемы ядерной угрозы полностью не исчезнут. Это как раз та сила, которая, кроме пользы, способна причинить серьезные разрушения и уничтожить жизнь на земле. Поэтому нужно максимально ответственно относится к атомной энергии и не играть с огнем, как это делают сильные мира сего.

Ядерный взрыв - процесс деления тяжелых ядер. Для того чтобы произошла реакция, необходимо как минимум 10 кг высокообогащенного плутония. В естественных условиях это вещество не встречается. Данное вещество получается в результате реакций, производимых в ядерных реакторах. Естественный уран содержит приблизительно 0,7 процентов изотопа U-235, остальное - уран 238. Для осуществления реакции необходимо, чтобы в веществе содержалось не менее 90 процентов урана 235.

В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные удары, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов:

Воздушный (высокий и низкий)

Наземный (надводный)

Подземный (подводный)

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва являются:

Ударная волна

Световое излучение

Проникающая радиация

Радиоактивное заражение местности

Электромагнитный импульс

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. Она действует продолжительное время и обладает большой разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек ударная волна проходит около 1000 м, за 5 сек − 2000 м, за 8 сек − около 3000 м. Это служит обоснованием норматива № 5 ЗОМП "Действия при вспышке ядерного взрыва": отлично − 2 сек, хорошо − 3 сек, удовлетворительно − 4 сек.

Поражающее действие ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства, прежде всего, определяются избыточным давлением и скоростью движения воздуха в ее фронте.

Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны.



Ударная волна способна наносить поражения и в закрытых помещениях, проникая туда через щели и отверстия. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые.

Легкие поражения характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей.

Поражение средней тяжести характеризуются кратковременной потерей сознания с последующими тяжёлыми головными болями, нарушениями памяти, повреждением органов слуха, кровотечением из носа и ушей, вывихами конечностей.

Тяжелые поражения характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей.

Степень поражения ударной волной зависит, прежде всего, от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние − до 2 км, тяжелые − до 1,5 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном − в воде. Кроме того, при этих видах взрывов часть энергии расходуется на создание ударной волны и в воздухе.

Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.



От воздействия ударной волны защищают убежища, в большой степени ослабляют её воздействие укрытия. На значительном расстоянии от места взрыва защитой могут служить складки местности и местные предметы.

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение.

Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Она состоит из нагретых до высокой температуры паров веществ ядерного боеприпаса, воздуха, а при наземных взрывах − и частиц грунта. Размеры светящейся области и время её свечения зависят от мощности, а форма − от вида взрыва. Световое излучение распространяется со скоростью около 300 тыс. км/ч, т.е. практически мгновенно. Время действия светового излучения для ядерных взрывов сверхмалой мощности составляет около 0,2 с, малой мощности 1-2 с, средней мощности 2-5 с, крупной мощности 5-10 с и сверхкрупной мощности 20-40 с. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца.

Распространение светового излучения в большей степени зависит от прозрачности атмосферы. В дождливую, снежную погоду, при сильном тумане, в запылённом (задымлённом) воздухе действие светового излучения значительно слабее.

Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может приводить к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком, они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса.

При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

В зависимости от воспринятого светового импульса ожоги делятся на четыре степени.

Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности и отёки.

При ожогах второй степени на коже появляются пузыри.

При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При четвёртой степени - обугливание кожи.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 Мгт это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 4,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1 Мгт.

Вспышка ядерного взрыва служит первым сигналом для принятия мер защиты. Любая непрозрачная преграда, любой объект создающий тень, может служить защитой от светового излучения.

От воздействия светового излучения защищают убежища и укрытия, а также складки местности.

Проникающая радиация представляет собой невидимый поток гамма - лучей и нейтронов, испускаемых из зоны ядерного взрыва. Время действия гамма-лучей до 10 - 15 с, нейтронов − доли секунды. Гамма-лучи и нейтроны распространяются во все стороны от центра взрыва на сотни метров и даже на расстояния до 2 - 3 км. С увеличением расстояния от взрыва количество гамма-лучей и нейтронов, проходящее через единицу поверхности, уменьшается.

При подземном и подводном ядерных взрывах действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма лучей водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью гамма лучей и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-лучи и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (Р). Доза поглощения радиации измеряется в радах (рад). Соотношение между рентгеном и радом зависит от материала среды (для биологической ткани 1 Р = 0,93 рад). Дозе радиации 1 Р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

В зависимости от дозы излучения различают четыре степени лучевой болезни.

Первая возникает при получении человеком дозы от 100 до 250 Р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя.

Вторая степень лучевой болезни развивается при получении дозы 250-400 Р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстрее, личный состав в большинстве случаев выходит из строя. В большинстве случаев лучевая болезнь второй степени заканчивается выздоровлением поражённых через 1,5 - 2 месяца.

Третья степень лучевой болезни возникает при дозе 400 - 700 Р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением, жаждой, рвотой, поносом, часто с кровью, кровоизлияниями во внутренние органы, изменениями в составе крови и другими недомоганиями. Выздоровление может наступить через несколько месяцев при своевременном и эффективном лечении. Нередко приводит к смертельному исходу.

Четвёртая степень возникает при дозах радиации выше 700 Р и приводит к смертельному исходу.

При дозах 1000 Р и более развивается молниеносная форма лучевой болезни, при которой личный состав быстро теряет боеспособность и погибает через несколько дней.

Допустимые дозы облучения людей:

Однократная - 50 Р;

Многократная;

В течение 10 суток - 100 Р;

В течение 3 месяцев - 200 Р;

В течение года - 300 Р.

Защитой от проникающей радиации являются убежища. Ослабляют воздействие проникающей радиации на человека укрытия, складки местности и местные предметы.

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловлено выпадением радиоактивных веществ из облака ядерного взрыва и образованием наведённой радиоактивности в грунте вследствие воздействия нейтронного потока.

При выпадении радиоактивной пыли на местности образуются зоны заражения, пребывание в которых может представлять опасность для жизни и здоровья людей. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, если через час после взрыва уровень радиации составит 1100 Р/ч, то через 7 часов он будет равен примерно 10 Р/ч, а через 49 часов 1 Р/ч.

При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бетаактивны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики: от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру. Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кт равна 6 км, для боеприпаса мощностью 10 Мгт она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину нескольких десятков километров. Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 100 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие Эми обусловлено возникновением напряжений и током в проводниках различной протяженности расположенных в воздухе, земле, на технике и других объектах.

Под действием ЭМИ в аппаратуре наводятся электрические токи и напряжения, которые могут вызывать пробои изоляции, повреждения полупроводниковых приборов и других элементов радиотехнических устройств.

Если ядерные взрывы произойдут вблизи линий энергоснабжения и связи, имеющих большую протяженность, то наведенные в них напряжения могут по проводам распространяться на значительные расстояния, вызывая при этом повреждения радиоаппаратуры и находящихся вблизи нее людей.