Болезни

В чем можно померить энергию. Измерение электрической мощности и энергии. Сильная энергетика человека

В чем можно померить энергию. Измерение электрической мощности и энергии. Сильная энергетика человека

.
Знахарки давали осиновую лучинку человеку. За неимением такой можно заменить ее на обыкновенную спичку.

Необходимо ее зажечь и подождать, пока она сгорит до конца. Чтобы не обжечь себе пальцы, можно спичку перехватить: взяться за обгоревший конец, либо сжечь ее в два этапа - это совсем неважно. Важно только, чтобы держал данную спичку тот человек, чью следует проверить.
Почему? Потому как именно огонь (а точнее, так называемая, плазма) вступает в контакт с существующими энергетическими . А уже в результате данного взаимодействия изменяются древесины, находящейся в центре пламени.

После того, как спичка полностью сгорит, ее нужно бросить в стакан с простой водой. Если по истечении двух или трех минут она утонет, значит, у испытуемого человека энергетическое поле нарушено. Каждый может возразить: спичка естественно утонет, ведь уголь является тяжелее воды. Да, это правильное утверждение, но только со стороны . Все дело в том, что при отдельных (когда в руках держит спичку человек с достаточно сильным энергетическим полем) не осиновый уголь, так как перестает впитывать воду. Поэтому для понимания эксперимента лучше взять все-таки осиновую лучинку.
Если она утонула, не стоит расстраиваться. Может это просто присутствуют незначительные нарушения в энергетике (например, человек заразился чужими отрицательными эмоциями). Но если данная утонувшая лучинка подтверждает какие-то давние опасения, тогда нужно срочно принимать меры.

Все существующее в мире – люди, животные, камни, деревья имеют свое энергетическое поле или, как его еще называют, биоэнергетику. По сути, взаимодействие человека с окружающим миром заключается в постоянном обмене энергией и информацией с другими объектами. Человек, который способен делать это лучше остальных, живет более гармоничной, полноценной жизнью.

Инструкция

На энергетическое поле человека влияет множество факторов. Важно все – в каких его зачали родители, не было ли это сделано в неблагоприятном месте, в какое время, день недели, месяц и год случилось это событие. Если ребенок был зачат во время солнечного или лунного затмения, то его энергетическое поле изначально будет нарушено, ведь во время затмений изменяется энергетическое поле самой Земли.

Зависит энергетика человека и от солнечной активности. У людей, рожденных во время активного Солнца, энергетика более мощная, более устойчивая к воздействию внешней среды. Люди, рожденные с 10 по 21 , обладают энергетикой, способной притягивать приключения. Поэтому для таких людей важно постоянно заниматься очисткой своей , ходить босиком, заниматься физическим трудом. Дети, родившиеся , обладают более мощной энергетикой и более крепким здоровьем, чем дети, родившиеся при аналогичных условиях, но в другие месяцы.

В норме биополе человека имеет яйцеобразную форму и выходит за пределы физического тела на 40 сантиметров – полтора метра. Однако вы и сами не раз могли почувствовать изменения в человека – когда в помещение входит новый гость, и складывается впечатление, что он занимает слишком много места и потеснил всех присутствующих. Напротив же, человек, весь вечер просидевший незамеченным, обладает слабой энергетикой.

Благодаря своей интуиции вы прекрасно сможете определить человека и понять, подходит ли он вам. Для этого вам необходимо лишь прислушаться к своим ощущениям. Не замечаете ли вы приступов после общения с человеком? Нет ли у вас обострения хронических болезней при длительном с ним? Чувствуете ли вы спокойствие и умиротворение, находясь с человеком на близком расстоянии? Не ругаетесь ли на пустом месте? Если на все вопросы вы ответили «нет», значит, энергетическое поле этого человека подходит вам.

Видео по теме

Энергетика человека – сложная, уравновешенная система, которая практически не связана с биохимическими процессами, происходящими в организме. Причин для истощения человеческой энергетики масса, важно понимать, какие из них являются ключевыми.

Почему у меня слабое энергетическое поле?

Энергетическое зависит от психологического состояния. Если человек – жизнелюб, его энергетическое поле будет намного плотнее, чем у постоянно недовольных жизнью людей. Так что, если вы постоянно жалуетесь на жизнь, ищете ее темные стороны, раздражаетесь по пустякам, это может привести к существенному ослаблению вашей энергетики. Нужно отметить, что эта связь работает в обе стороны. Если вдруг обычно довольный жизнью человек начинает вести себя, как ипохондрик, скорее всего это означает, что с его полем что-то произошло.
Если силы вас покинули, заставьте себя отдохнуть. Лучше всего помогает сон, так что используйте успокаивающие чаи или снотворное, чтобы убедить свой организм как следует выспаться.

Что вредит энергетике

Человеческая энергия – лакомый кусочек для энергетических вампиров. Они делятся на два вида. Первые провоцируют людей на скандал, фактически, как только человек выходит из себя в присутствии таких людей, он лишается львиной доли своей энергии. Второй тип – нытики. Вечно недовольные люди, которые ищут и требуют поддержки и сочувствия по любому поводу, могут отнимать энергию не хуже скандалистов. Если вдруг вы понимаете, что уровень вашей энергетики сильно просел, вспомните, вдруг вы выходили из себя за последнее время или занимались бесплодными утешениями. Если подобный инцидент присутствовал в вашей жизни, сведите к минимуму общение с людьми, принимавшими в нем участие. Понаблюдайте за своим состоянием в течение некоторого времени.

Зачастую самыми опасными энергетическими вампирами являются ближайшие родственники. Как правило, они тянут на себя энергию не со зла. В этой ситуации просто нужно постараться держать себя в руках, не выходить из себя в их присутствии и следить за эмоциональными реакциями.

Займитесь любимым делом. Это очень хорошо восстанавливает уровень энергии. Во время занятий чем-то приятным и интересным люди забывают об усталости и времени.

Еще одна частая причина потери энергии – ожидание какого-то очень важного события. Очень часто важнейшие события в нашей жизни «стягивают» в будущее огромное количество нашей энергии. Особенно это касается ситуаций, которые только могут произойти. При этом все мысли концентрируются только на таких будущих возможностях, а значит, и вся энергия тоже утекает туда же. Постарайтесь отключиться от подобного события, если оно есть в вашем будущем. Подобное энергетическое истощение не приведет ни к чему хорошему.

В настоящее время необходимо измерять мощность и энергию постоянного тока, активную мощность и энергию переменного однофазного и трехфазного тока, реактивную мощность и энергию трехфазного переменного тока, мгновенное значение мощности, а также количество электричества в очень широких пределах.

Электрическая мощность определяется работой, совершаемой источником электромагнитного поля в единицу времени.

Активная (поглощаемая электрической цепью) мощность

P a =UIcos > = I 2 R=U 2 /R, (1)

где U , I - действующие значения напряжения и тока;  - угол сдвига фаз.

Реактивная мощность

Р р = UIsin = I 2 X . (2)

Полная мощность

P n = UI = PZ . Эти три типа мощности связаны выражением

P =(Р а 2 2 р ) (3)

Так, мощность измеряется в пределах 1 Вт... 10 ГВт (в цепях постоянного и однофазного переменного тока) с погрешностью ±(0,01...0,1) %, а при СВЧ - с погрешностью ±(1...5) %. Реактивная мощность от единиц вар до Мвар измеряется с погрешностью ±(0,1...0,5)%.

Диапазон измерения электрической энергии определяется диапазонами измерения номинальных токов (1 нА...1О кА) и на­пряжений (1 мкВ...1 MB), погрешность измерения составляет ±(0,1...2,5)%.

Измерение реактивной энергии представляет интерес только для промышленных трехфазных цепей.

Измерение мощности в цепях постоянного тока. При косвенном измерении мощности используют метод амперметра и вольтметра и компенсационный метод.

Метод амперметра и вольтметра. В этом случае приборы включаются по двум схемам (рис.1).

Метод прост, надежен, экономичен, но обладает рядом существенных недостатков: необходимостью снимать показания по двум

Рис. .1. Схемы измерения мощности по показаниям вольтметра и амперметра при малых (а) и больших (б) сопротивлениях нагрузки

приборам; необходимостью производить вычисления; невысокой точностью за счет суммирования погрешности приборов.

Мощность Р х , вычисленная по показаниям приборов (рис. 1а), имеет вид

Она больше действительного значения мощности, расходуемой в нагрузке Р н, на значение мощности потребления вольтметра Р v , т. е. Р н = Р х – Р v .

Погрешность определения мощности в нагрузке тем меньше, чем больше входное сопротивление вольтметра и меньше сопротивление нагрузки.

Мощность Р х , вычисленная по показаниям приборов (рис 1., б), имеем вид

Она больше действительного значения мощности потребления нагрузки на значение мощности потребления амперметром Р А . Методическая погрешность тем меньше, чем меньше входное сопротивление амперметра и больше сопротивление нагрузки.

Компенсационный метод. Этот метод применяется тогда, когда требуется высокая точность измерения мощности. С помощью компенсатора поочередно измеряется ток нагрузки и падение напряжения на нагрузке. Измеряемая мощность определяется по формуле

P = U н I н . (4)

При прямом измерении активная мощность измеряется электромеханическими (электродинамической и ферродинамической систем), цифровыми и электронными ваттметрами.

Электродинамические ваттметры применяются как переносные приборы для точных измерений мощности (класс 0,1... 2,5) в цепях постоянного и переменного тока с частотой до нескольких тысяч герц.

Ферродинамические щитовые вольтметры применяются в цепях переменного тока промышленной частоты (класс 1,5…2,5).

В широком диапазоне частот применяются цифровые ваттметры, основу

составляют различные преобразователи мощности (например, термоэлектрические), УПТ, микропроцессор и ЦОУ. В цифровых ваттметрах осуществляется автоматический выбор пределов измерений, самокалибровка и предусмотрен внешний интерфейс.

Для измерения мощности в высокочастотных цепях также используются специальные и электронные ваттметры.

Для измерения реактивной мощности на низких частотах служат реактивные ваттметры (варметры), в которых путем использования специальных схем отклонение подвижной части электродинамического ИМ пропорционально реактивной мощности.

Включение электромеханических ваттметров непосредственно в электрическую цепь допустимо при токах нагрузки, не превышающих 10... 20 А, и напряжениях до 600 В. Измерение мощности при больших токах нагрузки и в цепях высокого напряжения производится ваттметром с измерительными трансформаторами тока ТА и напряжения TV (рис..2).

Измерение активной мощности в цепях трехфазного тока. Метод одного ваттметра. Этот метод применяется только в симметричной системе с равномерной нагрузкой фаз, одинаковыми углами сдвига по фазе между векторами I и U и с полной симметрией напряжений (рис..3).

Рис..3. Схемы включения ваттметра в трехфазную трехпроводную цепь при полной симметрии присоединения нагрузки:

а - звездой; б - треугольником; в ~- с искусственной нулевой точкой

Рис.4. Схемы включения двух ваттметров в трехфазную цепь: а - в 1-ю и 3-ю; б - в 1-ю и 2-ю; в - в 2-ю и 3-ю

На рис. .3, а нагрузка соединена звездой и нулевая точка доступна. На рис.3, б нагрузка соединена треугольником, ваттметр включен в фазу. На рис. .3, в нагрузка соединена треугольником с искусственной нулевой точкой. Искусственная нулевая точка создается с помощью двух резисторов, каждый из которых равен сопротивлению цепи обмотки напряжения ваттметра (обычно указывается в техническом паспорте на ваттметр).

Показания ваттметра будут соответствовать мощности одной фазы, а мощность всей трехфазной сети во всех трех случаях включения прибора будет равна мощности одной фазы, умноженной на три:

Р = 3 P w

Метод двух ваттметров. Этот метод применяется в трехфазной трехпроводной цепи независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Асимметрия - это система, в которой мощности отдельных фаз различны. Токовые обмотки ваттметров включаются в любые две фазы, а обмотки напряжения включаются на линейные напряжения (рис. 4).

Полная мощность может быть выражена в виде суммы показаний Двух ваттметров. Так, для схемы, представленной на рис..4, а,

где  1 - угол сдвига фаз между током I 1 и линейным напряжением U 12,  2 - угол сдвига фаз между током I 3 и линейным напряжением U 32 . В частном случае при симметричной системе напряжений и одинаковой нагрузке фаз  1 , = 30° -  и  2 = 30° -  показания ваттметров будут:

При активной нагрузке (= 0) показания ваттметров будут одинаковы, так как P W ] = P W 2 IUcos 30°.

При нагрузке с углом сдвига ср = 60° показания второго ваттметра равны нулю, так как P W 2 = IU cos(30° + ) = IU cos(30° + 60°) = 0, и в этом случае мощность трехфазной цепи измеряется одним ваттметром.

При нагрузке с углом сдвига  > 60° мощность, измеряемая вторым ваттметром, будет отрицательной, так как (30° +) больше 90°. В этом случае подвижная часть ваттметров повернется в обратную сторону. Для отсчета необходимо изменить на 180° фазу тока в одной из цепей ваттметра. В этом случае мощность цепи трехфазного тока равна разности показаний ваттметров

Метод трех ваттметров. Для измерения мощности трехфазной цепи при несимметричной нагрузке включаются три ваттметра, и общая мощность при наличии нулевого провода будет равна арифметической сумме показаний трех ваттметров. В этом случае каждый ваттметр измеряет мощность одной фазы, показания ваттметра независимо от характера нагрузки будут положительные (параллельная обмотка включается на фазное напряжение, т. е. между линейным проводом и нулевым). Если нулевая точка недоступна и нулевой провод отсутствует, то параллельные цепи приборов могут образовать искусственную нулевую точку при условии, что сопротивления этих цепей равны между собой.

Измерение реактивной мощности в однофазных и трехфазных цепях. Несмотря на то что реактивная мощность не определяет ни совершаемой работы, ни передаваемой энергии за единицу времени, ее измерение также важно. Наличие реактивной мощности приводит к дополнительным потерям электрической энергии в линиях передачи, трансформаторах и генераторах. Реактивная мощность измеряется в вольт-амперах реактивных (вар) как в однофазных, так и в трехфазных трех- и четырехпроводных цепях переменного тока электродинамическими и ферродинамическими или специально предназначенными для измерения реактивной мощности ваттметрами. Отличие реактивного ваттметра от обычного состоит в том, что он имеет усложненную схему параллельной цепи для получения сдвига по фазе, равного 90°

между векторами тока и напряжения этой цепи. Тогда отклоне­ние подвижной части будет пропорционально реактивной мощности Р р = UIsin . Реактивные ваттметры преимущественно применяются для лабораторных измерений и поверки реактивных счетчиков.

Реактивную мощность в трехфазной симметричной цепи можно измерить и активным ваттметром: для этого –токовая катушка последовательно включается в фазу А, катушка напряжения между фазами В и С.

Измерение мощности в цепях повышенной частоты. С этой це­лью можно использовать как прямые, так и косвенные измерения и в ряде случаев предпочтительнее могут оказаться косвенные, так как иногда легче измерить ток и напряжение на нагрузке, чем непосредственно мощность. Прямое измерение мощности в цепях повышенных и высоких частот производится термоэлектрическими, электронными ваттметрами, ваттметрами, основанными на эффекте Холла, и цифровыми ваттметрами.

Косвенные измерения осуществляются осциллографическим методом. Он применяется в основном тогда, когда цепь питается напряжением несинусоидальной формы, при высоких частотах, маломощных источниках напряжения и т. д.

Измерение энергии в однофазных и трехфазных цепях. Энергия измеряется электромеханическими и электронными счетчиками электрической энергии. Электронные счетчики электрической энергии обладают лучшими метрологическими характеристиками, большей надежностью и являются перспективными средствами измерений электрической энергии.

4. Измерение фазы и частоты

Фаза характеризует состояние гармонического сигнала в опре­деленный момент времени t . Фазовый угол в начальный момент времени (начало отсчета времени), т.е. при t = 0, называют нуле вым (начальным) фазовым сдвигом. Разность фаз  измеряют обычно между током и напряжением либо между двумя напряжениями. В первом случае чаще интересуются не самим углом сдвига фаз, а величиной cos или коэффициентом мощности. Cos- это ко­синус того угла, на который опережает или отстает ток нагрузки от напряжения, приложенного к этой нагрузке. Фазовым сдвигом  двух гармонических сигналов одинаковой частоты называют модуль разности их начальных фаз  =| 1 -  2 |. Фазовый сдвиг  не зависит от времени, если остаются неизменными начальные фазы  1 , и  2 . Разность фаз выражается в радианах или градусах.

Методы измерения угла сдвига фаз. Эти методы зависят от диапазона частот, уровня и формы сигнала, от требуемой точности и Наличия средств измерений. Различают косвенное и прямое изменения угла сдвига фаз.

Косвенное измерение. Такое измерение угла сдвига фаз Между напряжением U и током I в нагрузке в однофазных цепях

осуществляют с помощью трех приборов - вольтметра, амперметра и ваттметра (рис.5). Угол  определяется расчетным путем из найденного значения cos:

Метод используется обычно на промышленной частоте и обеспечивает невысокую точность из-за методической погрешности, вызванной собственным потреблением приборов, достаточно прост, надежен, экономичен.

В трехфазной симметричной цепи величина cos может быть определена следующими измерениями:

    мощность, ток и напряжение одной фазы;

    измерение активной мощности методом двух ваттметров;

    измерение реактивной мощности методом двух ваттметров с искусственной нейтральной точкой.

Среди осциллографических методов измерения фазы наибольшее распространение получили методы линейной развертки и эллипса. Осциллографический метод, позволяющий наблюдать и фиксировать исследуемый сигнал в любой момент времени, используется в широком диапазоне частот в маломощных цепях при грубых измерениях (5... 10 %). Метод линейной развертки предполагает применение двухлучевого осциллографа, на горизонтальные пластины которого подают линейное развертывающее напряжение, а на вертикальные пластины - напряжение, между которыми измеряется фазовый сдвиг. Для синусоидальных кривых на экране получаем изображение двух напряжений (рис.6, а) и по измеренным отрезкам АБ и АС вычисляется угол сдвига между ними

где АБ - отрезок между соответствующими точками кривых при переходе их через нуль по оси X ; АС - отрезок, соответствующий периоду.

Погрешность измерения х зависит от погрешности отсчета и фазовой погрешности осциллографа.



Если вместо линейной развертки использовать синусоидальное развертывающее напряжение, то получаемые на экране фигуры Лиссажу при равных частотах дают на экране осциллографа форму эллипса (Рис. 6б). Угол сдвига  x =arcsin(АБ/ВГ).

Этот метод позволяет измерять  х в пределах 0 90 о без определения знака фазового угла.

Погрешность измерения  х также определяется погрешностью отсчета

Рис..6. Кривые, получаемые на экране двухлучевого осциллографа: при линейной (а) и синусоидальной (б) развертке

и расхождениями в фазовых сдвигах каналов Х и Y осциллографа.

Применение компенсатора переменного тока с калиброванным фазовращателем и электронным осциллографом в качестве индикатора равенства фаз позволяет произвести достаточно точное измерение угла сдвига фаз. Погрешность измерения в этом случае определяется в основном погрешностью используемого фазовращателя.

Прямое измерение. Прямое измерение утла сдвига фаз осуществляют с помощью электродинамических, ферродинамических, электромагнитных, электронных и цифровых фазометров. Наиболее часто из электромеханических фазометров используют электродинамические и электромагнитные логометрические фазометры. Шкала у этих приборов линейная. Используются на диапазоне частот от 50 Гц до 6... 8 кГц. Классы точности - 0,2; 0,5. Для них характерна большая потребляемая мощность 1(5...10 Вт).

В трехфазной симметричной цепи измерение угла сдвига фаз  или cos осуществляется однофазным или трехфазным фазометрами.

Цифровые фазометры используются в маломощных цепях в диапазоне частот от единиц Гц до 150 МГц, классы точности - 0,005; 0,01; 0,02; 0,05; 0,1; 0,5; 1,0. В электронно-счетных цифровых фазометрах сдвиг по фазе между двумя напряжениями преобразуется во временной интервал, заполняемый импульсами стабильной частоты с определенным периодом, которые под-считываются электронным счетчиком импульсов. Составляющие погрешности этих приборов: погрешность дискретности, погрешность генератора стабильной частоты, погрешность, зависящая от точности формирования и передачи временного интервала.

Методы измерения частоты. Частота является одной из важнейших характеристик периодического процесса. Определяется числом полных циклов (периодов) изменения сигнала в единицу времени. Диапазон используемых в технике частот очень велик и колеблется от долей герц до десятков. Весь спектр частот подразделяется на два диапазона - низкие и высокие.

Низкие частоты: инфразвуковые - ниже 20 Гц; звуковые - 20...20000 Гц; ультразвуковые - 20...200 кГц.

Высокие частоты: высокие - от 200 кГц до 30 МГц; ультравысокие - 30...300 МГц.

Поэтому выбор метода измерения частоты зависит от диапазона измеряемых частот, необходимой точности измерения, величины и формы напряжения измеряемой частоты, мощности измеряемого сигнала, наличия средств измерений и т.д.

Прямое измерение. Метод основан на применении электромеханических, электронных и цифровых частотомеров.

Электромеханические частотомеры используют измерительный механизм электромагнитной, электродинамической и ферродинамической систем с непосредственным отсчетом частоты по шкале логометрического измерителя. Они просты в устройстве и эксплуатации, надежны, обладают довольно высокой точностью. Их используют в диапазоне частот от 20 до 2500 Гц. Классы точно­сти - 0,2; 0,5; 1,0; 1,5; 2,5.

Электронные частотомеры применяются при измерениях в частотном диапазоне от 10 Гц до нескольких мегагерц, при уровнях входного сигнала 0,5... 200 В. Они имеют большое входное сопротивление, что обеспечивает малое потребление мощности. Классы точности - 0,5; 1,0 и ниже.

Цифровые частотомеры применяются для очень точных изме­рений в диапазоне 0,01 Гц... 17 ГГц. Источниками погрешности являются погрешность от дискретности и нестабильности кварцевого генератора.

Мостовой метод. Этот метод измерения частоты основан на использовании частотозависимых мостов переменного тока, питаемых напряжением измеряемой частоты. Наиболее распространенной мостовой схемой для измерения частоты является емкостной мост. Мостовой метод измерения частоты применяют для измерения низких частот в пределах 20 Гц... 20 кГц, погрешность измерения составляет 0,5... 1 %.

Косвенное измерение. Метод осуществляется с использованием осциллографов: по интерференционным фигурам (фигурам Лиссажу) и круговой развертки. Методы просты, удобны и достаточно точны. Их применяют в широком диапазоне частот 10 Гц... 20 МГц. Недостатком метода Лиссажу является сложность расшифровки фигур при соотношении фигур более 10 и, следовательно, возрастает погрешность измерения за счет установления истинного отношения частот. При методе круговой развертки погрешность измерения в основном определяется погрешностью квантования основной частоты.

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ПАРАМЕТРОВ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ

20 , 11:39

Как наверняка знает каждый из нас, у сенсорных способностей человека есть широкий диапазон. Некоторые люди видят очень хорошо, другие не очень. У некоторых отличный слух, в то время как другие глухие. То же самое относится и к энергетической чувствительности


Все вещи состоят из вибрационной энергии. Некоторые люди отлично понимают энергию, которая их окружает, и они с лёгкостью могут сказать, когда её много или мало. Они легко чувствуют «хорошие» и «плохие» вибрации.

Не все чувствительные к энергии люди постоянно обладают всеми нижеперечисленными особенностями, но если вы замечаете за собой даже несколько из них, вы, скорее всего, довольно чувствительны к вибрационной энергии.

Сильная энергетика человека

1. Вы умеете глубоко сочувствовать другим людям



Часто человека с сильной энергетикой можно видеть там, где кто-то обижен или находится в расстроенных чувствах. Энергочувствительные люди зачастую являются первыми «получателями» информации о чужой проблеме. При этом пострадавшему всегда хочется подержать за руку такого человека, обнять его и поплакаться ему.


Энергочувствительные люди очень остро чувствуют эмоции других людей (а иногда и физическую боль), поэтому они легко понимают и сопереживают страдающим.

2. Эмоциональные горки


Наличие острого чувства вибрационной энергии часто означает, что когда человек ощущает вокруг себя «высокие» энергии, он находится на эмоциональном подъёме и наоборот. Пусть у вас наготове будут несколько вариантов действий на случай эмоционального спада.

3. Зависимость


Будучи чувствительным к энергии, такой человек ощущает намного больше, чем другие люди. Чтобы спастись от чувства низкой вибрационной энергии, часто такие люди могут использовать алкоголь или какие-то другие расслабляющие средства, чтобы уменьшить силу ощущений от отрицательной энергии.

Эти люди могут быть склонны и к другим видам пристрастий, таким как еда, азартные игры или шоппинг.

Человек и его энергетика



Люди с сильной энергетикой часто очень хорошо понимают мотивы поведения людей, они в некоторых случаях прямо на ходу улавливают и чувствуют, когда кто-то хочет что-то сказать, хорошее или плохое, не имеет значения.

Это очень полезная черта, так как такого человека уже никто не сможет использовать в своих целях.

5. Люди с сильной энергетикой чаще всего интроверты


Не все чувствительные люди - это интроверты, но очень многие из них. Процесс ощущения эмоций и чувств других людей очень выматывает морально, поэтому часто энергочувствительным людям после таких «сеансов» нужен отдых и восстановление.

Они часто после продолжительных социальных взаимодействий могут чувствовать себя истощёнными.

6. Человек может видеть знаки


Люди с сильной энергетикой гораздо чаще понимают знаки, которые им посылает Вселенная. У них больше шансов найти смысл в событиях и обстоятельствах, которые большинство других людей посчитают случайностью.

Энергетика человека

Как мы можем видеть, сильная энергетика - это обоюдоострый меч. Концентрация на вибрационной энергии позволяет глубже понять Вселенную, но с другой стороны, это также может привести к некоторой повышенной стимуляции и вызвать множество проблем, если оставлять ситуацию без внимания.

Если вы считаете, что у вас сильная энергетика, и вы энергетически чувствительны, есть ряд вещей, которые вы можете делать, чтобы правильно использовать свой дар и не так сильно истощаться.


Прежде всего, первое, что может вам помочь усилить свои вибрационные «приёмники» или лучше чувствовать вибрацию окружающей среды - это медитация или йога для умственного и физического подъёма. Также рекомендуется регулярно очищать от хлама свой дом и рабочее пространство.

Помните о людях, которыми вы себя окружаете, держитесь подальше от токсичных индивидуумов, событий и обстоятельств, особенно когда чувствуете себя разбитым. Очень важно работать над самопринятием и научиться любить себя и свой дар.


Если вы пришли в этот мир как человек, чувствительный к восприятию энергии, то на вас автоматически ложатся некоторые обязанности. Однако, постоянный приток энергии из окружающей среды может подавлять вас и причинять боль.

Но если вы научитесь управлять своим даром, то начнут происходить удивительные вещи. Считывание энергии с людей и умение сопереживать другим будут огромным преимуществом.


Энергочувствительные люди обладают силой, способной толкать мир на положительные перемены, а также у них есть способности, чтобы стать величайшими мировыми лидерами, целителями и учителями.

Теперь давайте рассмотрим какие виды энергетики людей существуют сегодня.

Энергетика организма человека

1) Люди - энергетические зеркала


Если на такого человека направляют энергию, неважно положительную или отрицательную, она всегда вернётся к тому, кто её направляет. То есть человек-зеркало отражает энергию.

Эти свойства энергетики, присущей определённым людям, можно и нужно использовать, причём с высокой степенью эффективности, для того, чтобы защититься от негативной энергии, а в первую очередь, от её целенаправленных потоков.


Люди - зеркала отлично чувствуют окружающих людей, поэтому если им приходится отражать негативную энергию, будучи возле её носителя, они тут же понимают, кто перед ними и стараются не вступать с этим человеком ни в какие контакты.

Правда стоит добавить, что и сам носитель отрицательной энергетики на подсознательном уровне пытается не встречаться с подобными «зеркалами», потому как получение обратно своего же негатива скажется на нём не лучшим образом, вплоть до развития различных заболеваний или, как минимум, недомоганий.



И наоборот, для носителя положительной энергии контакт с людьми-зеркалами всегда приятен, ведь отражённый позитив возвращается к своему владельцу, заряжая его очередной порцией положительных эмоций.

Что же касается самого человека-зеркала, то после того, как он быстро понял, что перед ним носитель положительной энергетики, он в будущем будет только рад общению с таким человеком и будет поддерживать с ним тёплые отношения.

2) Люди - энергетические пиявки


Людей с такой энергетикой очень много, и каждый из нас практически ежедневно с ними сталкивается и общается. Это могут быть коллеги по работе, родственники или хорошие знакомые.

По сути энергетические пиявки представляют собой то же самое, что и энергетические вампиры. То есть это люди, которые испытывают проблемы с пополнением запасов своей энергии, и самый простой способ для них это сделать - прилипнуть к другому человеку, отобрав у него энергию, а с ней и жизненную силу.



Такие люди настойчивы и агрессивны, они излучают негатив, и у них есть свойственный им метод выкачивания энергии из окружающих, который довольно прост. Они создают конфликтную ситуацию, затевают ссору или спор, а иногда могут даже и унизить человека, когда другие методы не помогают.

После случившегося у них значительно улучшается самочувствие, к ним приходит бодрость, и они ощущают прилив сил, потому что выпили у человека достаточно энергии для подпитки себя. Человек - донор, подвергшийся воздействию энергетической пиявки, наоборот, ощущает опустошённость, подавленность, а иногда у него могут даже возникнуть физические недомогания.



Чтобы пиявка хорошо себя чувствовала вокруг неё постоянно должны быть доноры, и они сами стремятся держать в своём поле зрения таких людей, к энергетическому полю которых можно присосаться.

Влияние энергетики на человека

3) Люди - энергетические стены



Человек - энергетическая стена - это личность с очень сильной энергетикой. Часто о таких людях можно слышать, что они непробиваемые. Все неприятности, если таковые появляются на их жизненном пути, отлетают от них буквально как от бетонной стены.


Однако, есть во взаимодействии с такими людьми и отрицательная сторона. Негативная энергия, направленная на них, естественно отскакивает и не всегда возвращается к тому, кто её направил. Если в данный момент возле «стены» есть другие люди, то негатив может уйти на них.

4) Люди - энергетические прилипалы


Эти люди с самого момента знакомства с ними начинают выливать на собеседника огромное количество отрицательной энергии. Причём, не дождавшись вопроса, они сразу выкладывают весь негатив, который у них накопился.

Прилипала, как и пиявка, не забирает энергию напрямую. Такой человек тоже пытается обосноваться в жизненном пространстве окружающих и задержаться в нём надолго. Прилипалы - это люди с очень плохой и низкой энергетикой, они постоянно себя навязывают, всегда хотят находится рядом, постоянно звонят своим «жертвам», ищут встреч, просят советов и т.д.



Но если позже возникают какие-то трудности в их жизни, то они очень любят обвинять во всём происходящем негативе тех, кто был рядом. Таким образом, прилипалы не создают конфликтные ситуации, как пиявки, а получают свою порцию чужой энергии при помощи моральной поддержки, сочувствия и советов.

То есть путём навязывания себя окружающим людям, а также заставляя их косвенными путями общаться, прилипалы питаются энергией этих людей. Но стоит добавить, что общающиеся с ними люди не страдают, как от контакта с энергетическими вампирами.

Энергетический человек

5) Люди - энергетические поглотители



В этом качестве поглотители могут быть как донорами, так и получателями. Эти люди очень чувствительны, у них энергоинформационный обмен всегда ускорен. Им нравится лезть в чужую жизнь, проявляя ярко выраженное желание помочь и оказывая влияние на чужую энергетику.


Поглотители бывают двух видов: первые поглощают и положительную, и отрицательную энергию, любят обижаться без причин, но довольно быстро забывают обиды; вторые принимают очень много отрицательной энергии, при этом отдают много позитива, они чутки к проблемам людей, положительно влияя на биополя окружающих, но сами страдают.

6) Люди - энергетические самоеды


Эти люди всегда зацикливаются на своих переживаниях. Самоеды замкнуты и осознанно не хотят общаться с окружающими. Они не умеют правильно перераспределить энергию, поэтому они копят в себе очень много негатива.

7) Люди - энергетические растения


Люди - растения отдают энергию, то есть они являются настоящими энергетическими донорами. Этому типу людей присуще чрезмерное любопытство. Эта особенность приносит им много неприятностей, потому как вызывает неудовольствие и гнев окружающих людей.

8) Люди - энергетические фильтры


Человек - фильтр обладает сильной энергетикой, способной пропускать через себя огромное количество положительной и отрицательной энергии. Вся поглощённая таким человеком информация в изменённом виде возвращается к своему источнику, но несёт другой заряд.

Всё отрицательное остаётся на фильтре, к которому прибавляется позитив. «Фильтры» зачастую это успешные прирождённые дипломаты, миротворцы, психологи.

9) Люди - энергетические посредники


У посредников отлично работает энергообмен. Они отлично принимают энергию, однако им крайне сложно противостоять воздействию негативной энергии. Например, с посредником кто-то поделился негативной информацией и передал ему отрицательную энергию. Посредник не может с ней справиться, поэтому передаёт информацию дальше.

Аналогичная ситуация происходит и в случае с положительной информацией. Такой тип людей является одним из самых распространённых.


Киловатт - кратная единица, образованная от «Ватт»

Ватт

Ватт (Вт, W) - системная единица измерения мощности.
Ватт - универсальная производная единица в системе СИ, имеющая специальное наименование и обозначение. Как единица измерения мощности, «Ватт» был признан в 1889г. Тогда же эта единица и была названа в честь Джеймса Уатта (Ватта).

Джеймс Ватт - человек, который придумал и сделал универсальную паровую машину

Как производная единица системы СИ, «Ватт» был включён в неё в 1960г.
С тех пор, в Ваттах измеряется мощность всего подряд.

В системе СИ, в Ваттах, допускается измерять любую мощность - механическую, тепловую, электрическую и т.д. Также допускается образование кратных и дольных единиц от исходной единицы (Ватт). Для этого рекомендовано использовать набор стандартных префиксов системы СИ, вида - кило, мега, гига и т.д.

Единицы измерения мощности, кратные ватт:

  • 1 ватт
  • 1000 ватт = 1 киловатт
  • 1000 000 ватт = 1000 киловатт = 1 мегаватт
  • 1000 000 000 ватт = 1000 мегаватт = 1000 000 киловатт = 1гигаватт
  • и т.д.

Киловатт-час

В системе СИ нет такой единицы измерения.
Киловатт-час (кВт⋅ч, kW⋅h) - это внесистемная единица, которая выведена исключительно для учёта использованной или произведённой электроэнергии. В киловатт-часах учитывается количество потреблённой или произведённой электроэнергии.

Использование «киловатт-час», как единицы измерения, на территории России регламентирует ГОСТ 8.417-2002, в котором однозначно указано наименование, обозначение и область применения для «киловатт-час».

Скачать ГОСТ 8.417-2002 (cкачиваний: 2305)

Выдержка из ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин», п.6 Единицы, не входящие в СИ (фрагмент таблицы 5).

Внесистемные единицы, допустимые к применению наравне с единицами СИ

Для чего нужен киловатт-час

ГОСТ 8.417-2002 рекомендует использовать «киловатт-час», как основную единицу измерения для учёта количества использованной электроэнергии. Потому что «киловатт-час» - это наиболее удобная и практичная форма, позволяющая получать наиболее приемлемые результаты.

При этом, ГОСТ 8.417-2002 абсолютно не возражает против использования кратных единиц, образованных от «киловатт-час» в тех случаях, когда это уместно и необходимо. Например, при лабораторных работах или при учёте выработанной электроэнергии на электростанциях.

Образованные кратные единицы от «киловатт-час» выглядят, соответственно:

  • 1 киловатт-час = 1000 ватт-час,
  • 1 мегаватт-час = 1000 киловатт-час,
  • и т.д.

Как правильно писать киловатт-час⋅

Правописание термина «киловатт-час» по ГОСТ 8.417-2002:

  • полное наименование нужно писать через дефис:
    ватт-час, киловатт-час
  • краткое обозначение нужно писать через точку:
    Вт⋅ч, кВт⋅ч, kW⋅h

Прим. Некоторые браузеры неверно интерпретируют HTML-код страницы и вместо точки (⋅) отображают знак вопроса (?) или иной кракозябр.

Аналоги ГОСТ 8.417-2002

Большинство национальных технических стандартов нынешних постсоветских стран увязаны со стандартами бывшего Союза, поэтому в метрологии любой страны постсоветского пространства можно найти аналог российского ГОСТ 8.417-2002, либо ссылку на него, либо его переработанный вариант.

Обозначение мощности электроприборов

Общепринятая практика - обозначать мощность электроприборов на их корпусе.
Возможно следующее обозначение мощности электрооборудования:

  • в ваттах и киловаттах (Вт, кВт, W, kW)
    (обозначение механической или тепловой мощности электроприбора)
  • в ватт-часах и киловатт-часах (Вт⋅ч, кВт⋅ч, W⋅h, kW⋅h)
    (обозначение потребляемой электрической мощности электроприбора)
  • в вольт-амперах и киловольт-амперах (VA, кVA)
    (обозначение полной электрической мощности электроприбора)

Единицы измерения для обозначения мощности электроприборов

ватт и киловатт (Вт, кВт, W, kW) - единицы измерения мощности в системе СИ Используются для обозначения общей физической мощности чего угодно, в том числе и электроприборов. Если на корпусе электроагрегата стоит обозначение в ваттах или киловаттах - это значит, что этот электроагрегат, во время своей работы, развивает указанную мощность. Как правило, в «ваттах» и «киловаттах» указывается мощность электроагрегата, который является источником или потребителем механического, теплового или иного вида энергии. В «ваттах» и «киловаттах» целесообразно обозначать механическую мощность электрогенераторов и электродвигателей, электронагревательных приборов и агрегатов и т.д. Обозначение в «ваттах» и «киловаттах» производимой или потребляемой физической мощности электроагрегата происходит при условии, что применение понятия электрической мощности будет дезориентировать конечного потребителя. Например, для владельца электронагревателя важно количество полученного тепла, а уже потом - электрические расчёты.

ватт-час и киловатт-час (Вт ⋅ч, кВт ⋅ч, W ⋅h, kW ⋅h) - внесистемные единицы измерения потребляемой электрической энергии (потребляемой мощности). Потребляемая мощность - это количество электроэнергии, расходуемое электрооборудованием за единицу времени своей работы. Чаще всего, «ватт-часы» и «киловатт-часы» применяются для обозначения потребляемой мощности бытовой электротехники, по которой её собственно и выбирают.

вольт-ампер и киловольт-ампер (ВА, кВА, VA, кVA) - Единицы измерения электрической мощности в системе СИ, эквивалентные ватт (Вт) и киловатт (кВт). Используются в качестве единиц измерения величины полной мощности переменного тока . Вольт-амперы и киловольт-амперы применяются при электротехнических расчётах в тех случаях, когда важно знать и оперировать именно электрическими понятиями. В этих единицах измерения можно обозначать электрическую мощность любого электроприбора переменного тока. Такое обозначение будет наиболее соответствовать требованиям электротехники, с точки зрения которой - все электроприборы переменного тока имеют активную и реактивную составляющие, поэтому общая электрическая мощность такого прибора должна определяться суммой её частей. Как правило, в «вольт-амперах» и кратным им единицам измеряют и обозначают мощность трансформаторов, дросселей и других, чисто электрических преобразователей.

Выбор единиц измерения в каждом случае происходит индивидуально, на усмотрение производителя. Поэтому, можно встретить от разных производителей, мощность которых указана в киловаттах (кВт, kW), в киловатт-часах (кВт⋅ч, kW⋅h) или в вольт-амперах (ВА, VA). И первое, и второе, и третье - не будет ошибкой. В первом случае производитель указал тепловую мощность (как нагревательного агрегата), во втором - потребляемую электрическую мощность (как электропотребителя), в третьем - полную электрическую мощность (как электроприбора).

Поскольку бытовое электрооборудование достаточно маломощное, чтобы учитывать законы научной электротехники, то на бытовом уровне, все три цифры - практически совпадают

Учитывая вышеизложенное можно ответить на главный вопрос статьи

Киловатт и киловатт-час | Какая разница?

  • Самая большая разница заключается в том, что киловатт - это единица измерения мощности, а киловатт-час - это единица измерения электроэнергии. Путаница и неразбериха возникает на бытовом уровне, где понятия киловатт и киловатт-час отождествляются с измерением производимой и потребляемой мощности бытового электроприбора.
  • На уровне бытового прибора-электропреобразователя - разница только в разделении понятий выдаваемой и потребляемой энергии. В киловаттах измеряется выдаваемая тепловая или механическая мощность электроагрегата. В киловатт-часах измеряется потребляемая электрическая мощность электроагрегата. Для бытового электроприбора цифры вырабатываемой (механической или тепловой) и потребляемой (электрической) энергии практически совпадают. Поэтому, в быту нет никакой разницы, в каких понятиях выражать и в каких единицах измерять мощность электроприборов.
  • Связывание единиц измерения киловатт и киловатт-час применимо только для случаев прямого и обратного преобразования электрической энергии в механическую, тепловую и т.д.
  • Совершенно недопустимо применять единицу измерения «киловатт-час» в случае отсутствия процесса преобразования электроэнергии. Например, в «киловатт-час» нельзя измерять потребляемую мощность дровяного отопительного котла, но можно измерять потребляемую мощность электрического отопительного котла. Или, например, в «киловатт-час» нельзя измерять потребляемую мощность бензинового двигателя, но можно измерять потребляемую мощность электромотора
  • В случае прямого или обратного преобразования электрической энергии в механическую или тепловую, увязать киловатт-час с другими единицами измерения энергии можно при помощи онлайн-калькулятора сайта tehnopost.kiev.ua:

- Вольт (часто обозначается просто V) - это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.

- Ампер (амп. или А, для сокращения) - это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.

- Ом - величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.

- Ватт (W) - это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:

Вольты х Амперы = Ватты

Принято пользоваться киловаттом (kW) как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.

- Киловатт-час - это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.

5 Единицы измерения тепловой энергии

Значение потребленной тепловой энергии (количества теплоты ) может выводиться измерения – Гкал, ГДж, МВтч, кВтч. тепловая энергия может передаваться потребителю с помощью двух видов теплоносителей: горячая вода или водяной пар.

Тепловая энергия может быть измерена в виде:

теплоты (количество теплоты), которая является характеристикой процесса теплообмена и определяется количеством энергии, получаемым (отдаваемым) телом в процессе теплообмена; в международной системе единиц (СИ) измеряется в джоулях (Дж), устаревшая единица - калория (1 кал = 4,18 Дж)).

энтальпии теплоносителя , которая является термодинамическим потенциалом (или функцией состояния) и определяется массой, температурой и давлением теплоносителя, в международной системе единиц (СИ) измеряется в калориях

Энтальпию теплоносителя, используют в качестве меры (количественной характеристики) тепловой энергии. Технологические особенности тепловой энергии предопределяют своеобразие его отпуска и приемки и, как следствие, порядок учета тепловой энергии, который зависит, во-первых, от вида теплоносителя, с помощью которого передается тепловая энергия; во-вторых, от системы теплоснабжения, подразделяющейся на открытые водяные (или паровые) и закрытые.

Измерение тепловой энергии и ее учет не являются тождественными понятиями, поскольку измерение есть нахождение значения физической величины опытным путем при помощи средств измерения, а учет тепловой энергии - использование результатов измерения.

Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.

Единицы измерения напряжения

Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.

Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.

Измерение силы тока

Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Измерение мощности

Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.

Измерение электроэнергии по счётчику

Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.

Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.

Термин электроэнергия (электрическая энергия, электричество) является физическим и широко распространенным термином. В быту и промышленности он означает процесс производства (выработки), передачи и распределения электроэнергии, которая может быть получена 2 способами:

  • от энергопоставляющей компании;
  • с помощью , называемых генераторами.

Единицей измерения потребления электроэнергии является кВт-час. Электричество обладает рядом положительных свойств и благодаря им она широко применяется во всех отраслях нашего хозяйства и, конечно, в быту. К ним относят:

  1. простоту выработки;
  2. возможность передачи на огромные расстояния;
  3. способность преобразовываться в другие виды энергии;
  4. легко и просто распределяться между разными потребителями.

В настоящее время тяжело представить производство, сельское хозяйство и быт людей без использования электричества. С его помощью освещаются здания, помещения и территории, работает различная техника , оборудование и устройства, передвигается электротранспорт, обогреваются дома и производственные площади, осуществляется связь и многое другое.

Генерация (преобразование различных видов энергии в электрическую) электроэнергии происходит с помощью тепло-, гидро-, ядерной и альтернативной энергетики . Вырабатывается электроэнергия на специальных электростанциях, функционирование и принцип действия которых определяется их названием.

Активная и реактивная электроэнергия

Передача электроэнергии осуществляется по линиям воздушным или кабельным. Такие линии называют электрическими сетями . Расчет потребляемой электроэнергии с абонентами производится с учетом полной мощности тока, проходящего через электрическую цепь. Затраты полной мощности делят на 2 показателя энергии:

  • активная;
  • реактивная.

Активная энергия, которая является составляющей выработанной полной мощности (измеряется в кВ·А), совершает полезную работу и у большинства электроприборов в расчетах она совпадает с ней. Например, если в паспорте на какое-то устройство (утюг, электропечь, обогреватель и т.д.) указана активная мощность в кВт, то и полная мощность будет такой же, только уже в кВ·А.

В электрических цепях с реактивными элементами (емкостной или индуктивной нагрузкой) часть полной мощности расходуется не на совершение полезной роботы . Это и будет реактивная электроэнергия. Такое понятие характерно для цепей переменного тока. Здесь присутствует такое явление, как несоответствие фазы напряжения фазе тока. Происходит или ее опережение (при емкостной нагрузке) или отставание (при индуктивной нагрузке). Потери происходят из-за нагревания. Многие бытовые и промышленные приборы и оборудование имеют реактивную составляющую (электродвигатели, переносной электроинструмент, бытовая техника и т.д.). Тогда при расчете за потребленную электроэнергию вводят поправочный коэффициент мощности. Обозначается он как cos fi и его величина лежит обычно в пределах от 0,6 до 0,9 (указывается в паспортных данных на конкретное электроустройство). Например, если в паспорте переносного инструмента указана мощность в 0,8 кВт и значение cos = 0,8, то в этом случае полная потребляемая мощность составит - 1 кВт(0,8/0,8). Считается негативным явлением и при уменьшении показателя cos снижается полезная мощность.

Обратите внимание! При отсутствии или потере паспорта на конкретное электроустройство для вычисления полной мощности применяют коэффициент cos = 0,7.

Чем выше значение cos , тем меньше потери активной электроэнергии и, конечно, такое электричество будет стоить дешевле. Для повышения этого коэффициента используются различные компенсирующие устройства. Это могут быть генераторы опережающего тока, батареи конденсаторов и др. устройства.

Помимо передачи по проводникам существует еще беспроводная передача электроэнергии. В данный момент существует технология беспроводной зарядки мобильных телефонов и некоторых , электромобилей и т.п. Они имеют ограничения по дальности и малую эффективность передачи энергии, поэтому говорить об их широком применении не приходится.

Ватт (обозначение: Вт , W ) - в системе СИ единица измерения мощности.

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам . В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.

Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).

Следовательно Килова́тт-час (кВт·ч) - внесистемная единица измеренияработы или количества произведенной энергии. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Интересные факты

С помощью 1 кВт·ч можно добыть 75 кгугля, 35 кгнефти, испечь 88 буханок хлеба, выткать 10 метровситца, вспахать 2,5 соткиземли

Каждый человек наделен своей энергетикой. Она бывает врожденная и полученная в течение жизни. Есть слабая энергетика, есть энергетика сильная. От нее, по мнению специалистов в области эзотерики, зависят личностное развитие и успех человека в жизни. Как же определить свое энергетическое поле?

Определенных способов проверки человека на его энергетическую мощь нет. Энергетику нельзя измерить приборами. Но ее можно почувствовать. Как правило, человек активный, целеустремленный и деятельный обладает большим запасом жизненных сил. А тот, кто постоянно жалуется на нехватку энергии, и есть человек с низким уровнем энергетики.

Энергетически сильный человек, как правило, всегда бывает в хорошем настроении. Он умеет управлять своими эмоциями, знает, на что способен и смело идет к цели. Его не пугают трудности, так как он чувствует в себе силу, которая поможет в сложный период.

Люди с сильной энергетикой более удачливы по жизни. Они бодры и позитивны. Их настрой и крепкое здоровье позволяет легко добиваться своих целей. Энергичные люди могут манипулировать окружающими, отстоять свою точку зрения и завоевать внимание к своей персоне.

Однако те, у кого высокий энергетический потенциал, должны уметь контролировать свою силу. Энергию лучше направлять во благо себе и окружающим. Если у вас сильная энергетика, то есть вероятность того, что вы можете сглазить человека и нанести вред его биополю.

Энергетически слабый человек часто болеет. Если у него и возникают хорошие идеи, то он не спешит их реализовывать. Люди со слабой энергетикой быстро устают. Их легко обидеть или оказать на них влияние.

Уровень энергетики более точно можно определить по сновидениям. Что чаще всего вам снится?

Если во сне вы часто в идите реки, леса, заросли - то это признак переизбытка энергии. Также об этом может свидетельствовать музыка во сне или ремень, который сильно стягивает вашу талию. В этом случае с энергетикой у все в порядке. Правда, случается, что чрезмерная энергичность не доводит до добра. Если ваши силы направлены во благо, от них будет реальная польза. Но если вы растрачиваете ее по пустякам, то ничего хорошего от своей внутренней силы вы не получите.

Если вам постоянно снятся руины, старые дома, пропасть, пустота, голод, жажда, ссоры, драки, узкие дороги и коридоры, то вы испытываете недостаток жизненной силы. Это знак того, что срочно нужно изменить свою жизнь и восстановить энергию .

Не спешите отчаиваться, если вдруг поняли, что энергетически вы не сильны. Есть мнение, что человеческая энергетика постоянно меняется . Она может быть врожденной, наследственной (ее уровень это зависит от многих факторов, таких как место рождение, энергетика рождения, обстоятельства рождения и прочее) и приобретенной.

Приобретенная энергетика может меняться в зависимости от того, какой образ жизни ведет человек, чем он занимается, где живет и с кем общается. Исходя из этого, можно легко повысить свой энергетический уровень. Для этого существует много способов.

  • Во-первых, необходимо полноценно питаться и наладить режим дня.
  • Во-вторых, необходимо почаще оставаться наедине с собой и своими мыслями, чтобы лучше понять себя и свои желания.
  • В-третьих, нужно отдавать предпочтение тому делу, которое приносить моральное удовлетворение.
  • В-четвертых, следует больше общаться с людьми, которые настраивают вас на позитивные эмоции.

Зная свой энергетический потенциал, вы можете самостоятельно его усилить (если он слабый), либо направить в нужное русло для достижения целей. Обладая внутренней силой, вы можете добиться всего, чего захотите. Главное, постоянно работать над энергетикой, не давать ей сбоя и уметь контролировать ее, когда это необходимо.

23.10.2013 16:31

День большинства людей начинает довольно рано – кто встает на учебу, кто на работу. Некоторым...